InTaO₄ und GaTaO₄ mit geordneter und ungeordneter Metallverteilung

O. Harneit und Hk. Müller-Buschbaum

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40-60, W-2300 Kiel (Deutschland)

(Eingegangen am 2. Oktober 1992)

Abstract

Single crystals of GaTaO₄ (I) and InTaO₄ (II) were prepared by solid state reactions. I crystallizes with orthorhombic symmetry, space group D_{2h}^{14} -Pbcn, a = 4,612 Å, b = 5.588 Å, c = 4.974 Å, Z = 2, and belongs to the α -PbO₂ type. II exhibits monoclinic symmetry, space group C_{2h}^4 -P2/a, a = 5.150 Å, b = 5.770 Å, c = 4.821 Å, $\beta = 91.35^\circ$, Z = 2, and is isotypic to InNbO₄.

Zusammenfassung

Einkristalle von GaTaO₄ (I) und InTaO₄ (II) wurden mit Feststoffreaktionen erhalten. I kristallisiert mit orthorhombischer Symmetrie, Raumgruppe D_{2h}^{14} -Pbcn, a = 4,612 Å, b = 5,588 Å, c = 4,974 Å, Z = 2 und gehört zum α -PbO₂-Typ. II zeigt monokline Symmetrie, Raumgruppe C_{2h}^4 -P2/a, a = 5,150 Å, b = 5,770 Å, c = 4,821 Å, $\beta = 91,35^\circ$, Z = 2 und ist mit InNbO₄ isotyp.

1. Einleitung

Oxoniobate und -tantalate des Indiums und des Galliums kristallisieren häufig mit der Zusammensetzung AMO₄. Durch Variation der dreiwertigen (A = Al, Ga, In, Ti, V, Cr) und der fünfwertigen Ionen ($M \equiv Nb$, Ta) sowie in Abhängigkeit von den Synthesebedingungen entstehen unterschiedliche Kristallstrukturen. Bekannt sind der AlNbO₄-, Wolframit-, α -PbO₂- und Rutiltyp. In kürzlich erschienenen Arbeiten über Oxotantalate der Zusammensetzung ATaO₄ [1, 2] findet sich eine Literaturübersicht zu Verbindungen der aufgeführten Kristallstrukturen. Für GaTaO4 wurden bereits 1962 an Hand von Röntgenaufnahmen des mikrokristallinen Materials drei verschiedene Modifikationen gefunden [3]. Diese wurden später dem Rutil- [4], α -PbO₂-[5] und Wolframittyp [6] zugeordnet. Eine neuere Arbeit [7] erwähnt neben der Rutilphase eine weitere Modifikation, deren Untersuchung an Einkristallen zu Raumgruppen führte, die zu keiner der bisher beobachteten gehören.

Im System $InMO_4$ (M = Nb, Ta) wurde durch Untersuchungen der Einkristalle von $InNbO_4$ bisher der Wolframittyp nachgewiesen [8], an anderer Stelle [7] jedoch eine zusätzliche orthorhombische Struktur erwähnt, ohne daß deren Einordnung erfolgte. An mikrokristallinem Material von $InTaO_4$ wurden die Gitterkonstanten bestimmt [7–10] und diese Substanz als isotyp zu $InNbO_4$ angesehen.

Der folgende Beitrag berichtet über die Strukturuntersuchungen an $GaTaO_4$ und $InTaO_4$.

2. Darstellung von (I): GaTaO₄- und (II): InTaO₄-Einkristallen und deren Röntgenstrukturanalyse

Mikrokristalline Präparate der Oxoniobate und -tantalate des Galliums und Indiums werden durch Feststoffreaktionen bei 1100 °C erhalten. Um die Flüchtigkeit bzw. Zersetzlichkeit der Oxide Ga_2O_3 und In_2O_3 bei höheren Temperaturen zu vermeiden werden zur Synthese von Einkristallen Schmelzmittel verwendet. Hochtemperaturreaktionen ohne Schmelzmittel erfordern stets einen Überschuß dieser dreiwertigen Oxide, um Verdampfungsverluste zu kompensieren.

Einkristalle der Verbindungen GaTaO₄ und InTaO₄ wurden bei einer Temperatur von 1550 °C mit einem Überschuß an Ga₂O₃ bzw. In₂O₃ präpariert. Hierzu wurden ein inniges Gemenge von Ga₂O₃ bzw. In₂O₃ und Ta₂O₅ im Verhältnis 3:1 zu Tabletten verpreßt und mehrere Tage an Luft in Platinschiffchen getempert. Zur Untersuchung möglicher Ordnungs-Unordnungsvarianten wurden die Präparate mit verschiedenen Geschwindigkeiten langsam von 1550 °C bis auf 800 °C, danach rasch auf Raumtemperatur abgekühlt. Die jeweils erhaltenen farblosen Kristalle wurden mechanisch abgetrennt und mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System LINK AN 1000) analytisch untersucht. Mit standardfreier Meßtechnik ergab sich ein Verhältnis von Ta:Ga/In = 1:1.

Mit Weissenberg- und Vierkreisdiffraktometermessungen wurden die kristallographischen Daten für I und II bestimmt. Diese sind in Tabelle 1 mit den Meßdaten zusammengestellt. Mit dem Programm SHELX-76 [11] erfolgte die Verfeinerung der Parameter. Die endgültigen Werte sind in Tabelle 2 wiedergegeben. Die wichtigsten Metall-Sauerstoffabstände enthält Tabelle 3.

TABELLE 1. Kristallographische Daten und Meßbedingungen für GaTaO₄ und InTaO₄

	GaTaO₄	InTaO₄	
Gitterkonstanten (Å)	a = 4,612(1) b = 5,588(2)	a = 5,150(1) b = 5,770(1)	
	c = 4,974(1)	c = 4,821(1) $\beta = 91,35(2)^{\circ}$	
Zellvolumen (Å ³)	128,20	143,22	
Raumgruppe	D_{2h}^{14} -Pbcn	$C_{2h}^{4} - P2/a$	
Zahl d. Formeleinheiten	Z = 2	Z = 2	
Diffraktometer	Vierkreis, Phillips-Stoe PW1100		
Strahlung-Monochromator	Mo K α , Graphit		
Korrektur	Polarisation-Lorentz, Untergrund		
20-Bereich	5°-70°		
Abtastung	$\Omega - 2\Theta$		
Ω-Schrittweite	0.030		
Zeit-Schritt	Variabel, 2-5 s	1–3 s	
Anzahl der gemessenen			
Reflexe	608	686	
Anzahl symmetrie-			
unabhängiger Reflexe	275 $(F_0 > 6\sigma(F_0))$	616 $(F_0 > 3\sigma(F_0))$	
Nicht berücksichtigte			
Reflexe	72 $(F_0 < 6\sigma(F_0))$	48 $(F_0 < 3\sigma(F_0))$	
Gütefaktor	<i>R</i> = 0.074	R = 0.079	

A set and the set of the set of

TABELLE 2. Atomparameter mit Standardabweichungen in Klammern für GaTaO₄ (I, Raumgruppe D_{2h}^{14} -Pbcn) und InTaO₄ (II, Raumgruppe C_{2h}^{4} -P2/a)

Atom	Lage	x	У	z	B (Å ²)
(I) ·					· · · · · · · · · · · · · · · · · · ·
Ga/Ta	40	0,0	0,1744(3)	0,25	0,36(2)
0	8d -	0.272(4)	0,390(3)	0,078(3)	0,09(18)
(II)					
In	2f	0,25	0,3219(5)	0,5	0,47(3)
Та	2e	0,25	0,8259(3)	0,0	0,32(2)
01	4g	0,438(3)	0,102(3)	0,213(4)	0,62(21)
O2	4g	0,902(3)	0,383(3)	0,265(3)	0,54(21)

TABELLE 3. Interatomare Abstände für GaTaO₄ (I) und InTaO₄ (II) mit Standardabweichungen in Klammern

I Ga/Ta-O 1,93	8(16) (2×)	1,974(16) (2×)	2,089(16) (2×)
II In-O2 2,12 In-O1 2,12	7(17) (2×) 7(17) (2×)	Ta-O2 Ta-O1	1,911(17) (2×) 1,972(17) (2×)

Abb. 1. Perpektivische Darstellung der Oktaederverknüpfung in InTaO₄. Weite Schraffur=InO₆-, enge=TaO₆-Oktaeder. In GaTaO₄ sind alle Oktaeder statistisch mit Ga³⁺ und Ta⁵⁺ besetzt.

3. Diskussion

Die Röntgenstrukturuntersuchungen an GaTaO₄ und InTaO₄ zeigen, daß beide Stoffe zu unterschiedlichen Kristallstrukturen gehören, obwohl die Polyederverknüpfung identisch ist. Beherrschendes Merkmal des Kristallaufbaus sind kantenverknüpfte Zick-zack-Oktaederketten, die in Abb. 1 wiedergegeben sind. Die Unterschiede liegen ausschließlich in der Besetzung dieser Oktaeder mit Ga³⁺ und Ta⁵⁺ bzw. In³⁺ und Ta⁵⁺.

 $GaTaO_4$ is isotyp zur orthorhombischen Form von FeNbO₄ [5, 12], welches mit ungeordneter Metallverteilung kristallisiert. Dies bedeutet, daß Ga³⁺ und Ta⁵⁺ die in Abb. 1 dargestellten Oktaederketten (Kettenrichtung längs [001]) statistisch besetzen. Unter Einbeziehung der Verbindung FeTaO₄ [13] gibt es somit im betrachteten System AMO₄ (M=Nb, Ta) nur drei Vertreter des ungeordneten α -PbO₂-Typs. Nach den bisherigen Erfahrungen steigt auch bei Stoffen der Zusammensetzung AMO₄ mit den Synthesetemperaturen die Wahrscheinlichkeit, eine ungeordnete Metallverteilung zu erhalten. Offenbar ist die hier gewählte Temperatur von 1550 °C für GaTaO₄ ausreichend hoch, um nur die α -PbO₂-Struktur zu bilden. In einer älteren Arbeit [7] wird GaTaO₄ für weit höhere Reaktionstemperaturen von 3000 °C eine Rutilstruktur mit statistischer Metallverteilung zugeschrieben. Diese Beobachtungen stehen im Einklang mit Berechnungen des Coulombanteils der Gitterenergie [14, 15], die zu einer Reihung der AMO₄-Strukturen führten. Ausgehend vom AlNbO₄-, über Wolframit-, α -PbO₂- zum Rutiltyp nimmt die Gitterenergie ab.

Die monokline Wolframitstruktur (Raumgruppe P2/c) entsteht durch Symmetrieerniedrigung [5] aus dem α -PbO₂-Typ (Raumgruppe *Pbcn* = Obergruppe zu P2/c) bei praktisch gleichen Zellabmessungen. Die Symmetrieerniedrigung ermöglicht die Aufspaltung der statistisch besetzten Metallpunktlage des α -PbO₂-Typs, wodurch für den Wolframittyp eine geordnete Metallverteilung zustande kommt. In Abb. 1 sind die zwei oktaedrisch koordinierten Punktlagen durch unterschiedliche Schraffur hervorgehoben. Wegen abweichender Achsbezeichnungen verlaufen im Wolframittyp die Oktaederketten längs [100].

Die voranstehende Röntgenstrukturanalyse zeigt, daß InTaO₄ im Wolframittyp kristallisiert. Damit wird die bereits beschriebene Isotypie [8-10] zwischen InNbO₄ und InTaO₄ bestätigt. Interessant ist die geordnete Verteilung von In³⁺ und Ta⁵⁺ auf MO₆-Oktaeder mit unterschiedlicher Deformation. Entgegen der Erwartung besetzt das hochgeladene Ta5+ jene Oktaeder, deren Abstände die unausgeglicheneren Werte aufweisen. In Übereinstimmung mit dem röntgenographischen Befund werden durch eine Vertauschung der In³⁺- und Ta⁵⁺-Positionen auch die Coulombanteile der Gitterenergie signifikant schlechter. Vermutlich führt der Größenunterschied zwischen In³⁺ und Ta⁵⁺ unter den oben aufgeführten Präparationsbedingungen zur geordneten Metallverteilung und damit Gewinn an Gitterenergie. Die Kombination relativ ähnlicher Ionenradien, wie Ga³⁺ und Ta⁵⁺, begünstigt somit die in GaTaO₄ beobachtete statistische Metallverteilung.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich technische Zusammenarbeit mbH., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD56685, des Autors und Zeitschriftenzitats angefordert werden.

Alle Rechnungen wurden auf der elektronischen Rechenanlage VAX 8550 der Universität Kiel durchgeführt und die Zeichnugen mit einem modifiziertem ORTEP-Programm [17, 18] erstellt.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Literatur

- 1 O. Harneit und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 596 (1991) 107.
- 2 A. Petersen und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 609 (1992) 51.
- 3 G. Bayer, Ber. Dtsch. Keram. Ges., 39 (1962) 535.
- 4 R. Roy, J. Am. Ceram. Soc., 37 (1954) 581.
- 5 F. Laves, G. Bayer und A. Panagos, Schweiz. Mineral. Petrogr. Mitt., 43 (1963) 217.
- 6 A. Panagos, Dissertation, ETH Zürich, 1962.
- 7 C. D. Whiston und A. J. Smith, Acta Crystallogr., 34 (1978) 1454.
- 8 L. H. Brixner und H. Y. Chen, Mater. Res. Bull., 15 (1980) 607.
- 9 J. Lieberts, Acta Crystallogr., 28 (1972) 3100.
- 10 C. Keller, Z. anorg. allg. Chem., 318 (1962) 89.
- 11 G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge, 1976.
- 12 W. T. A. Harrison und A. K. Cheetham, Mater. Res. Bull., 24 (1989) 523.
- 13 G. Pourroy, A. Malats, I. Riera, P. Poix und R. Poinsot, J. Solid State Chem., 88 (1990) 476.
- 14 R. Hoppe, Angew. Chem., 78 (1966) 52.
- 15 R. Hoppe, Adv. Fluorine Chem., 6 (1970) 387.
- 16 R. Wichmann und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 503 (1983) 101.
- 17 C. K. Johnson, *Rep. ORNL-3794*, 1965 (Oak Ridge National Laboratory, Oak Ridge, TN).
- 18 K.-B. Plötz, Dissertation, Universität Kiel, 1982.